Физические и химические свойства нержавеющих металлов

Физико-химические различия нержавеющих сплавов AISI 201/304/316/321/430

Красноломкость – это сопротивляемость металла к трещинам при горячей обработке давлением (штамповка, ковка, прокатка) в диапазоне температур красного или жёлтого каления (850-1150°C).

Хладноломкость – свойство металла трескаться или ломаться при холодной механической обработке.

Нержавеющие сплавы делятся на три группы:

1. Коррозионностойкая сталь – от неё требуется устойчивость к коррозии в простых промышленных и бытовых условиях (из неё можно делать детали для нефтегазовой, легкой, машиностроительной промышленности, бытовую нержавеющую посуду, хирургические инструменты).

2. Жаростойкая сталь – от неё требуется жаростойкость, то есть устойчивость к ржавению при высокой температуре в очень агрессивных средах, например, на химических производствах.

3. Жаропрочная сталь – от неё требуется жаропрочность, то есть повышенная механическая прочность при высокой температуре.

По химическому составу нержавеющие сплавы делятся на три вида:
1. Хромистые

Мартенситные;
Полуферритные (мартенситно-ферритные);
Ферритные.

2. Хромоникелевые

Аустенитные;
Аустенитно-ферритные;
Аустенитно-мартенситные;
Аустенитно-карбидные.

3. Хромомарганцево-никелевые

Стали марки AISI-304 -321 -316L причисляют к хромоникелевым сталям, аустенитному классу высоколегированных сталей, образующих при кристаллизации преимущественно однофазную аустенитную структуру γ-Fe c гранецентрированной кристаллической (ГЦК) решеткой, которая сохраняет форму при охлаждении материала до криогенных температур. Содержание другой фазы – высоколегированного феррита (δ-Fe с объёмно-центрированной кристаллической (ОЦК) решеткой) изменяется от 0 до 10%.

Эти сплавы содержат 18-25% Сг (хрома) благодаря этому металл жаро- и коррозионно устойчивый, а также 8-35% Ni (никеля), стабилизирующего аустенитную структуру и повышающего жаропрочность, увеличивая пластичность и технологичность сталей в большом интервале температур.

Это позволяет применять их в качестве коррозионностойких, жаростойких, жаропрочных криогенных конструкционных материалов в химических, теплоэнергетических и атомных установках, где они одновременно подвергаются воздействию напряжений, высоких температур и агрессивных сред.

Маркировка нержавеющих сплавов по AISI включают в себя 3 цифры и следующие за ними одну или две буквы. Первая цифра маркировки определяет класс стали. Обозначения аустенитных нержавеющих сталей начинаются с цифр 2ХХ и 3ХХ, а ферритные и мартенситные стали начинаются с 4ХХ.

Таблица соответствия стандартов сталей

Европейская
норма
EN10088-2

Аналоги стали

UNS

SIS

BS

JIS
Япония

ГОСТ
Россия

AISI
США

Германия

1.4301

S30400

2332/33

304S31

SUS304

08X18H10

304

X5CrNi1810

1.4404

S31603

2348

316S11

SUS316L

03X17H13M2

316L

X2CrNiMo17-12-2

1.4541

S32100

2337

321S31

SUS321

08X18H10T

321

X6CrNiTi18 -10

Дополнительные буквы, следующие за цифрами, используемые для маркировки нержавеющих сплавов по AISI означают:
хххL
Низкое содержание углерода 0,03%

хххS
Нормальное содержание углерода <0,08%

хххLN
Низкое содержание углерода <0,03% + добавлен азот

хххF
Повышенное содержание серы и фосфора

хххH
Расширенный интервал содержания углерода

хххN
Добавлен азот

хххSe
Добавлен селен

хххB
Добавлен кремний

хххTi
Добавлен титан

хххCu
Добавлена медь

Главным преимуществом сталей аустенитного класса AISI-304 -321 -316L являются их повышенные эксплуатационные характеристики (пластичность, прочность, коррозионная стойкость в большинстве рабочих сред) и отличная технологичность. Поэтому аустенитные коррозионностойкие сплавы широко используются в качестве конструкционного материала в разных отраслях машиностроения.

Продукция из аустенитных нержавеющих сплавов при нормальных условиях – не магнитятся, но после холодного деформирования (любой механической обработки) могут получить небольшие магнитные признаки (часть аустенита превращается в феррит).

Чем отличаются между собой сплавы AISI

AISI-304
Аустенитная, с малым содержанием углерода в составе. Модификация стали AISI-304 имеет большую сферу применения и высокий спрос у потребителей, потому что является универсальным сплавом. AISI-304 имеет лучшие (относительно других марок) характеристики свариваемости, сопротивлению ржавчине и окислению. Сорт этой марки обладает превосходными низкотемпературными параметрами и одновременно рекомендована к применению при высоких температурах. Среди множества других сплавов ее также выделяют механические характеристики, химический состав и относительно невысокая стоимость. AISI 304 имеет высокую пластичностью для таких операций механической обработки как прокат, волочение.

AISI-316L
Сплав аналогичен AISI-304 с очень низким содержанием углерода и добавлением молибдена около 2,5%. Сталь AISI-316L представляет собой улучшенный вариант версии AISI-304, который дополнительно обогащен молибденом. Плюс в этой стали более высокое содержание никеля. Эта версия стали имеет на много большую устойчивость к сопротивлению коррозии в агрессивных средах. В условиях паров уксусной кислоты, едкого хлора или морской воды содержание молибдена позволяет стали быть устойчивой к различным видам коррозии, среди которых можно назвать, в том числе, питтинговую (точечную) и щелевую. Более низкая общая коррозионная устойчивость в относительно мало агрессивных средах позволяет показывать прекрасную сопротивляемость коррозии в загрязненном воздухе и в приморской зоне.

AISI-321
Хромоникелевая сталь с примесью титана (Ti). Состав стали AISI-321 обладает высокими характеристиками сопротивления коррозии и высоким температурам, однако при этом она менее устойчива к воздействию серосодержащих сред. Эту сталь рекомендуется применять при температурах от 600°С до 800°С. Стоит отметить, что срок ее службы может быть очень длительным. Сталь AISI321 не подвержена межкристаллитной коррозии, поскольку в ее составе есть титан, применяемый для придания сплавам высокой твердости. Отдельное внимание стоит обратить на то, что в сваренном состоянии сталь AISI-321 не должна применяться в чрезмерно кислых агрессивных средах. Сплав более устойчив к механическому воздействию в отличии от AISI-304 -316L.

Устойчивость стали к коррозии

Применение сталей AISI

AISI-304
Это самая распространенная в использовании сталь. Она обладает высокой пластичностью, что позволяет широко применять AISI-304 в штампованных изделиях с большим уровнем вытяжки и сложным рельефом, например при производстве моек, раковин и тому подобных элементов быта. Благодаря малому содержанию углерода сталь AISI-304 обладает высокими сварочными свойствами.

Пищевая промышленность: производство различных емкостей, передающих устройств. Изготовление дымоходов, систем вентиляции и дымоудаления. Пищевые производства: молочные и пивоваренные, применяется сталь AISI-304 в качестве главного материала для производства оборудования, инструмента и приборов.

Вторыми по важности отраслями промышленности, которые не могут обойтись без стали AISI-304, можно назвать медицинскую и фармацевтическую. В этих отраслях AISI-304 применяют при изготовлении фармакологического и медицинского оборудования и инструментов, медицинской мебели и имплантатов.

Значительный объем потребления стали AISI-304 приходится на химическую и нефтехимическую отрасль. Благодаря высокой сопротивляемости агрессивным средам трубы из AISI-304 в этих областях используются повсеместно. Также, в нефтегазовой сфере большой объем потребления приходится на изготовление скважинных фильтров, плоских щелевых сит и решеток, которые производятся из профилированной нержавеющей проволоки.

AISI-316L
Из-за своего высокого сопротивления коррозии и окислению, хороших механических свойств, AISI-316 используется во многих секторах промышленности. Некоторые из них включают: баки и судна для хранения коррозионных жидкостей, специализированное промышленное оборудование в химическом, бумажно-целлюлозном, продовольственном, горнодобывающем, фармацевтическом и нефтехимическом секторах экономики, архитектурные конструкционные элементы, находящиеся в коррозионных средах.

AISI-321
Нержавеющая сталь AISI-321 используется во многих областях производства.

Машиностроение и металлообработка: для производства деталей механизмов и машин.

Пищевая и химическая промышленность: для производства емкостей цистерн и трубопроводов (труб и трубопроводной арматуры), контактирующих с кислыми и щелочными средами, в том числе, с продуктами питания.

Изготовление оборудования, работающего в диапазоне высоких температур: теплообменников, печной арматуры, корпусов тепловых и паровых котлов.

Нефтегазовая промышленность: для производства емкостей и цистерн высокой прочности, предназначенных для хранения веществ (сжатых и сжиженных газов) под давлением.

Установка сварных конструкций (опор, колонн, балок), взаимодействующих с агрессивными средами.

Значение химических элементов, присутствующих в нержавеющих сталях AISI

Углерод
Химический элемент Углерод
С увеличением содержания углерода в структуре стали увеличивается количество цементита – очень твердой и хрупкой фазы. Твердость цементита превышает твердость феррита примерно в 10 раз, поэтому прочность и твердость стали растут с повышением содержания углерода, а пластичность и вязкость, наоборот снижаются.
Кремний
Химический элемент Кремний
Наличие в составе кремния как технологической примеси обычно не превышает 0,37%. Кремний как технологическая примесь влияния на параметры стали не оказывает. В сталях, предназначенных для сварных конструкций, присутствие кремния не должно превышать 0,12-0,25%.
Марганец
Химический элемент Марганец
Марганец добавляют в стали как технологическую добавку для увеличения степени их раскисления и устранения вредного влияния серы. Марганец считается технологической примесью, если его содержание не превышает 0,8%. Марганец как технологическая примесь значительного влияния на свойства стали не имеет.
Фосфор
Химический элемент Фосфор
Пределы содержания фосфора как технологической примеси составляют 0,025-0,045%. Фосфор, как и сера, относится к наиболее вредным примесям в сталях и сплавах. Увеличение его содержания, даже на доли процента, повышая прочность, одновременно повышает текучесть, хрупкость и порог хладноломкости, снижает пластичность и вязкость. Вредное влияние фосфора особенно сильно сказывается при повышенном содержании углерода.
Сера
Химический элемент Сера
Вредная примесь. Повышение содержания серы значительно снижает механические и физико-химические характеристики сталей, в частности, пластичность, ударную вязкость, сопротивление истиранию и коррозионную стойкость. При горячем деформировании сталей и сплавов большое содержание серы ведет к красноломкости. Кроме того, повышенное содержание серы снижает свариваемость готовых изделий.
Азот
Химический элемент Азот
Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное количество азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250°С.
Хром
Химический элемент Хром
Основной легирующий элемент, обеспечивающий коррозионную стойкость стали в любых средах, в том числе окислительных. Хром образует на своей поверхности защитную оксидную пленку и благодаря этому приобретает повышенную химическую устойчивость. При добавлении хрома в сталь с концентрацией не менее 11,7 % он прочно соединяется с железом и придает ему антикоррозионные свойства, причем эти свойства увеличиваются пропорционально содержанию хрома.
Никель
Химический элемент Никель
В сталях является элементом, способствующим образованию и сохранению аустенита. Никель повышает прочность сталей. В комбинации с хромом и молибденом никель еще больше повышает способность сталей к термическому упрочнению, способствует повышению вязкости и усталостной прочности сталей. Растворяясь в феррите, никель повышает его вязкость. Никель увеличивает сопротивление коррозии хромоникелевых аустенитных сталей в неокисляющих кислотных растворах.
Молибден
Химический элемент Молибден
Молибден повышает коррозионную стойкость сталей и поэтому широко применяется в высоколегированных ферритных нержавеющих сталях и в хромоникелевых аустенитных нержавеющих сталях. Высокое содержание молибдена снижает склонность нержавеющей стали к точечной (питтинговой) коррозии. Молибден оказывает очень сильное упрочнение твердого раствора аустенитных сталей, которые применяются при повышенных температурах.
Титан
Химический элемент Титан
Титан повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Таблица химических параметров сплавов

Марка
стали
AISI
Химический состав, %
C Si Mn P S N Cr Mo Ni Ti
304 <0,07 <1,00 <2,00 <0,045 <0,015 <0,011 17,00-19,50 8,00-10,50
316 L <0,030 <1,00 <2,00 <0,045 <0,015 <0,011 16,50-18,50 2,00-2,50 10,00-13,00
321 <0,08 <1,00 <2,00 <0,045 <0,015 17,00-19,00 9,00-12,00 <0,70

Физические характеристики сталей AISI

Свойства Eдиница

измерения

AISI 304 AISI 316L AISI 321
Предел текучести, Rp N/mm² 190 200 190
Временное сопротивление разрыву, Rm N/mm² 500-700 500-700 500-700
Относительное удлинение, А100 % 45 40 45
Твердость HRC 215 215 215
Плотность кг/м³ 7,93 8,0 7,9
Температура плавления °С 1 420 1 440 1 420
Удельная теплоемкость J/kg∙K 500 500 500
Тепловое расширение W/m∙K 15 15 15
Электрическое сопротивление Ом 0,73 0,75 0,73
Магнитная проницаемость kA/m 1,015 1,005 1,01
Модуль упругости, Е MPa 200 200 200

Свариваемость нержавеющих сплавов

AISI-430 сложная в сварке марка так как относится к ферритным сплавам и не содержит никеля, точнее швы получаются хрупкими.
Основная причина потери рабочих характеристик сталями ферритного класса – межкристаллитная коррозия (МКК), в результате которой разрушение происходит по границам зерен.

Для устранения этого негативного явления избегают резкого охлаждения металла от +800°C, проводят стабилизирующий отжиг.
Варить марку AISI-430 и ей подобные, надо с высоколегированной присадочной проволокой и будет прочно, главное долго не перегревать.

Марки AISI-304/316/321 являются аустенитными поэтому шов получается намного прочнее.

Ещё по теме: Сварка нержавеющей стали


Химические и физические различия нержавеющих сплавов FAQ

Какие нержавеющие сплавы лучше сопротивляются коррозии?

Было обнаружено, что сплавы, имеющие высокую концентрацию азота (N), хрома (Cr) и молибдена (Mo), демонстрируют высокую устойчивость к точечной коррозии.
Числовой эквивалент стойкости к точечной коррозии (RREN). Чем выше значение показателя PREN, тем выше устойчивость к точечной коррозии.

AISI-904L - 36
AISI-316 - 26
AISI-304 - 19
AISI-430 - 16

Что такое красноломкость?

Красноломкость — это сопротивляемость металла к трещинам при горячей обработке давлением (штамповка, ковка, прокатка) в диапазоне температур красного или жёлтого каления (850-1150°C).

Что такое хладноломкость?

Хладноломкость — свойство металла трескаться или ломаться при холодной механической обработке.

Какая нержавеющая сталь легче поддаётся сварке?

Аустенитные сплавы варятся легче и шов прочнее AISI-304/316/321. Ферритный сплав AISI-430 сложнее сваривается и требуется соблюдение технологии сварки - варить нужно с высоколегированной присадочной проволокой и долго не перегревать.

Что означают дополнительные буквы следующие за цифрами в маркировке AISI?

хххL - Низкое содержание углерода 0,03%;
хххS - Нормальное содержание углерода <0,08%;
хххLN - Низкое содержание углерода <0,03% + добавлен азот;
хххF - Повышенное содержание серы и фосфора;
хххH - Расширенный интервал содержания углерода;
хххN - Добавлен азот;
хххSe - Добавлен селен;
хххB - Добавлен кремний;
хххTi - Добавлен титан;
хххCu - Добавлена медь.